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A reaction-advection-diffusion equation

DiffJugion Advection ReaJc:cion
ou .
55 = V-(aVU) + Aq-VU + f(xy,U)  inQ,
n-VU=0 on 09,

models the dynamics of a chemical of density U(t,x,y) in a reactive
medium with an advective field g(x,y).



Why Principal Eigenvalue?

@ In some cases u(t, x,y) has the form ¢(x - e — ct, x, y) where c is the
speed of propagation of the front ¢.

@ The main question is to understand the influence of large advection
on the speed of propagation.

@ The speed c has a formulation given via the principal eigenvalue of
the linearizing operator.

@ This leads to questions about the asymptotic behaviour of the
principal eigenvalue when the amplitude A of the flow g goes to oco.



Eigenvalues with Dirichlet Boundary Condition

We start with simple elliptic eigenvalue problems first.

—Apa+Aq-Voa=Aapa in £,

pa=0 on 0.

e Qs a bounded domain in RV of class C2(Q), with an outward unit
normal n.



Eigenvalues with Dirichlet Boundary Condition

We start with simple elliptic eigenvalue problems first.

—Apa+Aq-Voa=Aapa in £,

pa=0 on 0.

e Qs a bounded domain in RV of class C2(Q), with an outward unit
normal n.

@ gis an L>(Q) vector field such that / V.-q¢ =0, for all ¢ in
Q
C(Q).



Eigenvalues with Dirichlet Boundary Condition

—Apa+Aq Vo= ada Iinf2
oa=0 on 0N

@ For all A€ R, A4 is the principal eigenvalue and ¢4 is the principal
eigenfunction.

@ For each self-adjoint elliptic PDE, the principal eigenvalue is given by
the variational formula involving the Rayleigh quotient

2
Aa = min f\Vg§|
seHi(@) [ o




First Integrals

It turns out that the asymptotic behaviour of A4 depends on what we call
“first integrals” of the flow q.

Definition

A function w is said to be a first integral of the vector field g if
w € HY(Q),w #0 and ¢.Vw = 0 a.e. in Q. In other words, the
streamlines of g are level sets of w.




First Integrals

It turns out that the asymptotic behaviour of A4 depends on what we call
“first integrals” of the flow q.

Definition

A function w is said to be a first integral of the vector field g if
w € HY(Q),w #0 and ¢.Vw = 0 a.e. in Q. In other words, the
streamlines of g are level sets of w.

Notation

To = {w| w is a first integral of g and w = 0 on 0Q} .




Let g = V¢ = (—9y1, Ox1)) be a two-dimensional flow. Say
Y(x,y) = sin(x)sin(y). Then, clearly 1) is a first integral.
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Theorem (Berestycki, Hamel, Nadirashvili (2005))

/lVW|
1) If Iy # 0, then I|m Aa = min .
weZy W2

Q
i) If Iy = 0, then AIi_)moo Aa = +o0.




Theorem (Berestycki, Hamel, Nadirashvili (2005))

/ s
1) If Iy # 0, then I|m Aa = min

w€eZIy

Q
i) IfZo =0, then lim Aa = +oc.

Moreover, for all A € R and w € I,

/ Vw2
97.
X%
Q

Aa <




Proof
Step 1. If {\a,} be a bounded sequence, then there exist a subsequence
{An.} and w € Z; such that
| vut
Q
w?

liminf A\g,, > =

Apj —00 - /
Q




Proof

Step 1. If {\a,} be a bounded sequence, then there exist a subsequence

{An.} and w € Z; such that
/ VP
liminf \a,, 2 .

Ank—>oo - / W2
Q

i o
e

Step 2. If Zg # (0, then

g <

forall Ae R and all w € Zg




Let {\a,} be bounded. Let's find a nonzero first integral.

—Apa, +Anq-Voa, = Aa, 04, (1)

where ¢4, € H3 (Q).
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Let {\a,} be bounded. Let's find a nonzero first integral.

—Apa, +Anq-Voa, = Aa, 04, (1)

where ¢4, € H3(Q).Multiply equation (1) by ¢4, and integrate over Q,

2, An U2 ) — 2
Leal+ 5 [ a9 = [ &, )
—_—

is 0 since V-q=0
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Let {\a,} be bounded. Let's find a nonzero first integral.

—Apa, +Anq-Voa, = Aa, 04, (1)

where ¢4, € H3(Q).Multiply equation (1) by ¢4, and integrate over Q,

An
Leal+ 5 [ a9 = [ &, )
| S
is 0 since V-q=0
Then,
[V =, [ 3)
Q Q
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Let {\a,} be bounded. Let's find a nonzero first integral.
- A(bAn + An q- v(ﬁAn = )\An¢An7 (1)

where ¢4, € H3(Q).Multiply equation (1) by ¢4, and integrate over Q,

Leal+ 5 [ a9 = [ &, )
is 0 since V-q=0
Then,
[ 19oa= s, [ 64, 3)

Since ¢4, is an eigenfunction, we can assume /Q¢An =1.

10



Recall

Rellich Theorem N

Let Q be a bdd domain in RN which has a smooth bound-
ary. Let {u,} be a family of functions in Q such that
{up} and {Vu,} be uniformly bounded in L2(R), then
there exists a subsequence {u,, } and u € H* such that

Up, — u in L%(Q) o
Up, — u in HY(Q).

Moreover,

|,l7?1_>lgj IVun |l 20y = VUl 2q)-

11



Rellich theorem yields that there exist a subsequence {nx} and a function
w € H3(Q) such that

b, — W in L%(Q),
ap, —w in Hg(Q),
;l\inT—LnoE Voa,, r@) = HVWHB(Q)'

12



Rellich theorem yields that there exist a subsequence {nx} and a function
w € H3(Q) such that

b, — W in L2(Q),
ap, —w in Hg(Q),
;l\inT—LnoE Voa, @) > [[Vwll2q)-
Jo Vwl®

liminf |\ >
At Pan | 2 5
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Rellich theorem yields that there exist a subsequence {nx} and a function
w € H3(Q) such that

b, — W in L2(Q),
ap, —w in Hg(Q),
;l\inT—Lnoi Voa, @) > [[Vwll2q)-
Jo Vwl®

liminf |\ >
At Pan | 2 5

Now it's enough to show g - Vw = 0.
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We know
—Ada, +An q-Voa, =Aa, 4, (4)
devide both side by Ap,, then
1 AA
——A -V =k
A, Pa,, +9-Voa, A, DA, >

now take limit when A, — oo, so

0= lim q-VgZ)Ank:q-Vw,

Apj —00

so w is a first integral of flow g. &

13



Now let w € Zp. If ¢ is the eigenfunction corresponding to A,

—Ap+Aq-Vé =\

14



Now let w € Zp. If ¢ is the eigenfunction corresponding to A,

—Ap+Aq-Vé =\
W2

Let € > 0. Multiply the equation b ,
ply q Y btc
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Now let w € Zp. If ¢ is the eigenfunction corresponding to A,

—Ap+Aq-Vé =\
W2

o+e

Let € > 0. Multiply the equation by

[,
/g(b—i-a
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/—W But /|VW|
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: :54¢¢ /WVM

[ 2w(¢+e)Ve-Vw — w?|Vo|?

_/ (¢ +¢e)

B (wVo —w(p+¢)) (WVeo —w(p+e)) ”
-, CEDE A

is always <0
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: :54¢¢ /WVM

[ 2w(¢+e)Ve-Vw — w?|Vo|?

_/ (¢ +¢e)
B (wVo —w(p+¢)) (WVeo —w(p+e)) ”
-, CEDE A

is always <0

fQ |VW|2
fQ w2

Send € — 0, then

0< A< ¥

15



Extension to More General Elliptic Problems

Here we discuss the case of an Elliptic PDE with Dirichlet boundary
condition.

-V (quﬁA) + Aq.Voa+ Cqu = MP¢a in Q,
¢a=0 on 99,

where a(x) = (aj(x)) is a C*() symmetric matrix and there exist positive
numbers 6 and 3, such that

0l < > ay(x)&g < BIEP

1<ij<N

e There exist two positive numbers p; and po such that p; < P < po.
e C(x) € L™(Q)

v
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Extension to More General Elliptic Problems

—V - (aVpa) + Aq.Voa+ Coda = AaPda in Q,
$a=0 on 0f2.

Theorem (Berestycki, Hamel, Nadirashvili (2005))
Q IfIy # 0, then A\ is bounded

Aa — min JaVw - a(x)Vw + C(x)w?
weTo Jq Pw?

Q IfIy =0, then \g — 00 as A — 0.

as A — oo.
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Elliptic PDE With Neumann Boundary Condition

—V - (aVpa) + Aq.Voa+ Coa= Aaga in Q,
n-Voa=0 on 0R2.

All assumptions are same except some changes about vector field g,
V-gq=0ae inQandg-n=0in L} (99Q).

18



Elliptic PDE With Neumann Boundary Condition

—V - (aVpa) + Aq.Voa+ Coa= Aaga in Q,
n-Voa=0 on 0R2.

All assumptions are same except some changes about vector field g,
V.-g=0ae inQand g-n=0in L} _(5Q).

Notice here, we do not need first integrals which are zero on the boundary.
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Elliptic PDE With Neumann Boundary Condition

—V - (aVpa) + Aq.Voa+ Coa= Aaga in Q,
n-Voa=0 on 0R2.

All assumptions are same except some changes about vector field g,
V-gq=0ae inQandg-n=0in L} (99Q).

Notice here, we do not need first integrals which are zero on the boundary.

Theorem (Berestycki, Hamel, Nadirashvili (2005))
Aa is bounded and

a - min Jo Vw - a(x)Vw + C(x)w?

as A — oo.
weT fQ w?

18



Why is g - n = 0 necessary?

We give a counterexample which shows if g - n # 0, then theorem does not
hold.

Example

—a+ Apa + c(X)da = Aada in (0,1),

$a(0) = P4(1) = 0.

Here, g =1 and g - n £ 0. First integrals are nonzero constants.

19



Why is g - n = 0 necessary?

We give a counterexample which shows if g - n # 0, then theorem does not
hold.

Example

~Gat Ada+ c(x)da = Aaga in (0,1),
?a(0) = ¢a(1) = 0.
Here, g =1 and g - n £ 0. First integrals are nonzero constants.

e If ¢ =0, then theorem holds. Since On

the other hand, from the formula given by theorem we have each
Aa=0.
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Why is g - n = 0 necessary?

We give a counterexample which shows if g - n # 0, then theorem does not
hold.

Example

—Ga+ Ada + c(xX)pa = Aada in (0,1),

?a(0) = ¢a(1) = 0.
Here, g =1 and g - n £ 0. First integrals are nonzero constants.
o If ¢ =0, then theorem holds. Since On

the other hand, from the formula given by theorem we have each
Aa=0.

@ Now, let ¢ # 0 be a continuous function such that

1
c(0) < / c(x)dx. We see that theorem does not hold in this case.
0

v
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Why is g - n = 0 necessary?

First we rerwite equation in a self-adjoint way,
—(e ™ ¢n) + c(x)e M pa = Aae M pa in (0,1)
$a(0) = #a(1) = 0.

So

‘ fOl e—AX¢/2 + c(x)e‘AXqSA fo —Ax
AA = min T < .
whibn reme i

20



Why is g - n = 0 necessary?

First we rerwite equation in a self-adjoint way,
—(e ™ ¢n) + c(x)e M pa = Aae M pa in (0,1)
$a(0) = #a(1) = 0.

So

1 Ax ! _ _
)\A B o fO e AX¢2+C(X)E AX¢A fo Ax
¢€H1(0.1) Jy e Ax¢? N fo
But c(x) is a continous function in [0,1]. So according to Stone-
Weierstrass theorem, it can be approximated uniformly by a sequence
{Pn(x)} of polynomials.
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Why is g - n = 0 necessary?

First we rerwite equation in a self-adjoint way,
—(e ™ ¢n) + c(x)e M pa = Aae M pa in (0,1)
$a(0) = #a(1) = 0.

So

1 Ax ! _ _
)\A B o fO e AX¢2—|—C(X)E AX¢A fo Ax
¢€H1(0.1) Jy e Ax¢? N fo
But c(x) is a continous function in [0,1]. So according to Stone-
Weierstrass theorem, it can be approximated uniformly by a sequence
{Pn(x)} of polynomials.

fo e lim fol(ao +aix+ ...+ a,,x")e*AX
= | .

fO —AX n—o00 fol e—Ax

1 —Ax
a1x + ... +apx")e
= ¢(0)+ lim Jo (a1 T ") .
n—o0 fO e*AX

20



Why is g.n = 0 necessary?

so A < ¢(0). According to theorem

1 __Ax /2 —Ax 12 1
Aa = min Jo e ¢1 +cl)e™™9 :/ c(x).
oy fO efo¢2 0

1
So / c(x) < ¢(0), which contradicts with assumption. &
0

21



Parabolic framework

ul = Avt — Ag. VA t >0,
uA(t,) =0 on 0 and t >0,
UA(O, ) = UO(-)-

Theorem (Berestycki, Hamel, Nadirashvili (2005))

The following properties are equivalent;
i) There exists uy € HE(Q) such that lim u”(1,.) # 0.
A—00

i) The vector field q has a nonzero first integral in Hi(Q).
i) {\a} is bounded as A — oc.

22



Proof from (ii) to (i)

Since on the RHS it is an elliptic equation with Dirichlet boundary
condition so from first theorem iii and ii are equivalent.
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Proof from (ii) to (i)

Since on the RHS it is an elliptic equation with Dirichlet boundary
condition so from first theorem iii and ii are equivalent.

From proof of first theorem there exist a sequence A, — oo and w € 1
such that

bn—w in [3(Q),
oo —w in H}Q).
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Proof from (ii) to (i)

Since on the RHS it is an elliptic equation with Dirichlet boundary
condition so from first theorem iii and ii are equivalent.

From proof of first theorem there exist a sequence A, — oo and w € 1
such that

bn—w in [3(Q),

oo —w in H}Q).

Let u, and k, = e "', be the solution of (22) with initial conditions w
and ¢, in order. Call h, = u,(t,.) — e *Ep,(.)
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Proof from (ii) to (i)

Since on the RHS it is an elliptic equation with Dirichlet boundary
condition so from first theorem iii and ii are equivalent.
From proof of first theorem there exist a sequence A, — oo and w € 1
such that

o —w in [3(Q),

bn—w in H3(Q).
Let u, and k, = e "', be the solution of (22) with initial conditions w
and ¢, in order. Call h, = up(t,.) — e **¢p,(.) so hy, is a solution of

(hn), = Ah, — Aq - Vhy, t>0
hn(t,.) =0 on 0Q,t >0
hn(0,.) = w(.) = ¢a(.)
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Proof from (ii) to (i)

Since on the RHS it is an elliptic equation with Dirichlet boundary
condition so from first theorem iii and ii are equivalent.
From proof of first theorem there exist a sequence A, — oo and w € 1

such that
o —w in [3(Q),
bn—w in H3(Q).

Let u, and k, = e "', be the solution of (22) with initial conditions w
and ¢, in order. Call h, = up(t,.) — e **¢p,(.) so hy, is a solution of
(hn), = Ah, — Aq - Vhy, t>0
hn(t,.) =0 on 0Q,t >0
ha(0,.) = w(.) — ¢n(.)

Multiply equation by h, and integrate by parts
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Proof from (ii) to (i)

tr tr An t )
QJy i JQ 2 Ju Ja

is 0 since V-g=0

24



Proof from (ii) to (i)

tr tr An t 9
[ oo = [ [ aba— " [* [ g
Q t1 t1 Q t1 Q

is 0 since V-g=0
1 t2
5 [(e2) = Bk = = [ [Tl oo
2 Q t1

is always <0
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Proof from (ii) to (i)

tr tr An t
[ = [ fonn s [ oo
QJy i JQ 2 Ju Ja

. is 0 since V-g=0
1 2
5 [(e2) = Bk = = [ [Tl oo
Q t1

is always <0

so for each t; < t» we have

a2, gy < In(tr, oy - (5)

Now let t; = 0& th =1,
1n(L, M2y < llw = GallZ2(qy -

24



Proof from (ii) to (i)

- 2
Now let n — oo, so we get lim_ [An(L, )li2(q) = 0. But
hn(1,.) = un(1,.) — e¥n(.), s0

[Vwl*
I|m up(1,.) =exp( min

weTo(Q) / "2

Jw # 0.
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Proof from (ii) to (i)

- 2
Now let n — oo, so we get lim_ [An(L, )li2(q) = 0. But
hn(1,.) = un(1,.) — e¥n(.), s0

[Vwl*
I|m up(1,.) =exp( min

weTo(Q) / "2

from the inequality (5) it's clear not only for t=1, but also in each finite
time tp the result is true, meaning lim up(to,.) # 0.
n—o00

Jw # 0.

Remark
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Proof from (i) to (ii) According to our assumption, there exists an initial
function wy € Ha(Q) \ {0} such that u,(1,.) - 0in L?(Q) as n — oc.
Now we will prove it in three steps:
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Proof from (i) to (ii) According to our assumption, there exists an initial
function wy € Ha(Q) \ {0} such that u,(1,.) - 0in L?(Q) as n — oc.
Now we will prove it in three steps:

[1] There exist ¢ >0, M > 0 and a sequence A, — 00, such that

0<uw<M a.e.
0<up(t,) <M ae

”Un( )”Lz(Q > g for all Am
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Proof from (i) to (ii) According to our assumption, there exists an initial
function wy € Ha(Q) \ {0} such that u,(1,.) - 0in L?(Q) as n — oc.
Now we will prove it in three steps:

[1] There exist ¢ >0, M > 0 and a sequence A, — 00, such that
0<uw<M a.e.
0<up(t,) <M ae

”Un( )”Lz(Q > g for all Am

[2] There exist a subsequence {u,} and w € L2((0,1) x Q) such that
up — w,
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Proof from (i) to (ii) According to our assumption, there exists an initial
function wy € Ha(Q) \ {0} such that u,(1,.) - 0in L?(Q) as n — oc.
Now we will prove it in three steps:

[1] There exist ¢ >0, M > 0 and a sequence A, — 00, such that

0<uw<M a.e.
0<up(t,) <M ae

”Un( )”Lz(Q > g for all Am

[2] There exist a subsequence {u,} and w € L2((0,1) x Q) such that
up — w,

[3] We will prove the function w that we found in step 2, at a specific
time, is a nonzero first integral in H3 ().
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Proof from (i) to (ii)

Step 1. It is a result of u,(1,.) - 0 in L%(Q).
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Proof from (i) to (ii)

Step 1. It is a result of u,(1,.) - 0 in L%(Q).
Step 2. In proof of previous part we showed that the map
t — |lun(t, )|l ;2(q) is continuous and nonincreasing. So

[unll2(0,1yx0) < lluoll 2y, forallneN.
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Proof from (i) to (ii)

Step 1. It is a result of u,(1,.) - 0 in L%(Q).
Step 2. In proof of previous part we showed that the map
t — |lun(t, )|l ;2(q) is continuous and nonincreasing. So

H”nHB((o DxQ) = HUOHB(Q), for all n € N.

Since {u,} is a bounded sequence in L2((0,1) x Q) which is a Hilbert
space, so it has a weakly convergent subsequence u, — w in
L[%((0,1) x Q).
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Proof from (i) to (ii)

Step 1. It is a result of u,(1,.) - 0 in L%(Q).
Step 2. In proof of previous part we showed that the map
t — |lun(t, )|l ;2(q) is continuous and nonincreasing. So

HUnHB((o DxQ) = HUOHB(Q), for all n € N.

Since {u,} is a bounded sequence in L2((0,1) x Q) which is a Hilbert
space, so it has a weakly convergent subsequence u, — w in

L[%((0,1) x Q).

Step 3. As we did before multiply equation (22) by u, and then integrate

1 1
[ et = a0 ey — g0l
,1)x
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Proof from (i) to (ii)

Step 1. It is a result of u,(1,.) - 0 in L%(Q).
Step 2. In proof of previous part we showed that the map
t — |lun(t, )|l ;2(q) is continuous and nonincreasing. So

HUnHB((o DxQ) = HUOHB(Q), for all n € N.

Since {u,} is a bounded sequence in L2((0,1) x Q) which is a Hilbert
space, so it has a weakly convergent subsequence u, — w in

L[%((0,1) x Q).

Step 3. As we did before multiply equation (22) by u, and then integrate

1 1
[ et = a0 ey — g0l
,1)x

1
[Lnﬂw%umewszwﬂam- (6)
;1) x
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Proof from (i) to (ii)

Rellich theorem yeilds that there is a subsequence {up, } and a function wy
in H3((0,1) x Q) such that

U, — wy in [2((0,1) x Q),
—w in H3((0,1) x Q).

Up,
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Proof from (i) to (ii)

Rellich theorem yeilds that there is a subsequence {up, } and a function wy
in H3((0,1) x Q) such that

U, — wy in [2((0,1) x Q),
U, — wy in Hz((0,1) x Q).

Since up, — w in L%((0,1) x Q) and uniqueness of limit, w; = w. So
w € H3((0,1) x Q).
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Proof from (i) to (ii)

Rellich theorem yeilds that there is a subsequence {up, } and a function wy
in H3((0,1) x Q) such that

U, — wy in [2((0,1) x Q),
U, — wy in Hz((0,1) x Q).

Since up, — w in L%((0,1) x Q) and uniqueness of limit, w; = w. So
w € H3((0,1) x Q).
Now Let's prove q- Vw =0,

: 1 A, . 1
lim up™ = lim (——Aut% — q - Vutn).
Ankﬁoo Nk A,,k%oo Nk
So,
0= lim q.Vu** =g -Vw.
Ap, —00

Nk

28



Proof from (i) to (ii)

Now it's enough to show w is not zero. Since 0 < u, < M and the
function t — [lua(t,.)l| 2(q) is non increasing
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Proof from (i) to (ii)

Now it's enough to show w is not zero. Since 0 < u, < M and the
function t — [lua(t,.)l| 2(q) is non increasing

1
MQZ// up > — // z—ul,.2 . 7
21z [z [f Rz gl )
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Proof from (i) to (ii)

Now it's enough to show w is not zero. Since 0 < u, < M and the
function t — [lua(t,.)l| 2(q) is non increasing

MIQ| > // "> // B> (L )y ()
(0,1)xQ (0,1)xQ

Thus,
52
MiQ| > // > S
(0,1)xQ M
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Proof from (i) to (ii)

Now it's enough to show w is not zero. Since 0 < u, < M and the
function t — [lua(t,.)l| 2(q) is non increasing

1
M|Q| > // up > // 2 — ||ua(1,. 2 . 7
12 o Z Y OI)XQ v lun( )iy - (7)

Thus,
B / / Un >
(0,1)xQ
Q),

Since u, — w in L%((0,1) x

Q) > & (8)
MIQ| > // > & 8
| 01)><Q = M

So w is not zero in (0,1) x Q.

2"
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Proof from (i) to (ii)

Now it's enough to show w is not zero. Since 0 < u, < M and the
function t — [lua(t,.)l| 2(q) is non increasing

MIQ| > // "> // B> (L )y ()
(0,1)xQ (0,1)xQ

Thus,
MIQ >// >
| ‘ 01)><Q M
Since u, — w in L?((0,1) x Q),
M|Q >// 2— 8
jo onea” =M (8)

So w is not zero in (0,1) x Q.

To sum up, for almost every t € (0,1), the function w(t,.) is in Hy(Q)
and satisfies g(.) - Vw(t,.) = 0 a.e. in . From (8), one concludes there
exists at least a ty € (0,1) such that w(tp,.) is a nonzero first integral of

qin H3(Q). &
29



Conclusion

E studied the asymptotic behaviour of the principal eigenvalue
W of some linear elliptic or parabolic PDE with large advection, in the
case of an incompressible flow.
We saw this behaviour is dircetly related to the first integrals of underlying
velocity field g.
e If there is a nonzero first integral the sequence of principal eigenvalues
are going to be bounded.
e If there is no nonzero first integral, the sequence goes to infinity.
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