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Motivation

A reaction-advection-diffusion equation
∂U

∂t
=

Diffusion︷ ︸︸ ︷
∇ · (a∇U) +

Advection︷ ︸︸ ︷
Aq · ∇U +

Reaction︷ ︸︸ ︷
f (x , y ,U) in Ω,

n · ∇U = 0 on ∂Ω,

models the dynamics of a chemical of density U(t, x , y) in a reactive
medium with an advective field q(x , y).
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Why Principal Eigenvalue?

In some cases u(t, x , y) has the form φ(x · e − ct, x , y) where c is the
speed of propagation of the front φ.

The main question is to understand the influence of large advection
on the speed of propagation.

The speed c has a formulation given via the principal eigenvalue of
the linearizing operator.

This leads to questions about the asymptotic behaviour of the
principal eigenvalue when the amplitude A of the flow q goes to ∞.
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Eigenvalues with Dirichlet Boundary Condition

We start with simple elliptic eigenvalue problems first. −∆φA + A q · ∇φA = λAφA in Ω,

φA = 0 on ∂Ω.

Ω is a bounded domain in RN of class C 2(Ω), with an outward unit
normal n.

q is an L∞(Ω) vector field such that

∫
Ω
∇ · q φ = 0, for all φ in

C∞c (Ω).
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Eigenvalues with Dirichlet Boundary Condition

 −∆φA + A q.∇φA = λAφA in Ω

φA = 0 on ∂Ω

For all A ∈ R, λA is the principal eigenvalue and φA is the principal
eigenfunction.

For each self-adjoint elliptic PDE, the principal eigenvalue is given by
the variational formula involving the Rayleigh quotient

λA = min
φ∈H1

0 (Ω)

∫
|∇φ|2∫
φ2

.
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First Integrals

It turns out that the asymptotic behaviour of λA depends on what we call
“first integrals” of the flow q.

Definition

A function w is said to be a first integral of the vector field q if
w ∈ H1(Ω),w 6= 0 and q.∇w = 0 a.e. in Ω. In other words, the
streamlines of q are level sets of w .

Notation

I0 = {w | w is a first integral of q and w = 0 on ∂Ω} .
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Example

Let q = ∇⊥ψ = (−∂yψ, ∂xψ) be a two-dimensional flow. Say
ψ(x , y) = sin(x)sin(y). Then, clearly ψ is a first integral.

Figure : phase portrait of flow q. Figure : level sets of ψ.
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Theorem (Berestycki, Hamel, Nadirashvili (2005))

i) If I0 6= ∅, then lim
A→∞

λA = min
w∈I0

∫
Ω
|∇w |2∫
Ω

w 2
.

ii) If I0 = ∅, then lim
A→∞

λA = +∞.

Moreover, for all A ∈ R and w ∈ I0,

λA ≤

∫
Ω
|∇w |2∫
Ω

w 2
.
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Proof

Step 1. If {λAn} be a bounded sequence, then there exist a subsequence
{Ank} and w ∈ I0 such that

lim inf
Ank
→∞

λAnk
≥

∫
Ω
|∇w |2∫
Ω

w 2
.

Step 2. If I0 6= ∅, then

λA ≤

∫
Ω
|∇w |2∫
Ω

w 2
.

for all A ∈ R and all w ∈ I0
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Step 1.

Let {λAn} be bounded. Let’s find a nonzero first integral.

−∆φAn + An q · ∇φAn = λAnφAn , (1)

where φAn ∈ H1
0 (Ω).

Multiply equation (1) by φAn and integrate over Ω,∫
Ω
|∇φAn |

2 +
An

2

∫
Ω

q · ∇(φ2
An

)︸ ︷︷ ︸
is 0 since ∇·q=0

= λAn

∫
Ω
φ2
An
. (2)

Then, ∫
Ω
|∇φAn |

2 = λAn

∫
Ω
φ2
An
. (3)

Since φAn is an eigenfunction, we can assume

∫
Ω
φ2
An

= 1.
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Recall

Let Ω be a bdd domain in RN which has a smooth bound-
ary. Let {un } be a family of functions in Ω such that
{un} and {∇un} be uniformly bounded in L2(Ω), then
there exists a subsequence {unk} and u ∈ H1 such that

unk → u in L2(Ω)

unk ⇀ u in H1(Ω).

Moreover,

lim inf
nk→∞

‖∇unk‖L2(Ω) ≥ ‖∇u‖L2(Ω).

Rellich Theorem

♠
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Step 1

Rellich theorem yields that there exist a subsequence {nk} and a function
w ∈ H1

0 (Ω) such that

φAnk
→ w in L2(Ω),

φAnk
⇀ w in H1

0 (Ω),

lim inf
Ank
→∞

∥∥∥∇φAnk

∥∥∥
L2(Ω)

≥ ‖∇w‖L2(Ω).

lim inf
Ank
→∞
|λAnk

| ≥
∫

Ω |∇w |2∫
Ω w 2

.

Now it’s enough to show q · ∇w = 0.
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Step 1

We know
−∆φAnk

+ Ank q · ∇φAnk
= λAnk

φAnk
, (4)

devide both side by Ank , then

− 1

Ank

∆φAnk
+ q · ∇φAnk

=
λAnk

Ank

φAnk
,

now take limit when Ank →∞, so

0 = lim
Ank
→∞

q · ∇φAnk
= q · ∇w ,

so w is a first integral of flow q.♣
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Step 2: finding upper bound

Now let w ∈ I0. If φ is the eigenfunction corresponding to λ,

−∆φ+ A q · ∇φ = λφ.

Let ε > 0. Multiply the equation by
w 2

φ+ ε
,

∫
Ω
∇φ · ∇ w 2

φ+ ε
+
��

���
���

���
�:0

A

∫
Ω

q · ∇(ln(φ+ ε)w 2)−
��

���
���

��:0

A

∫
Ω

q · ∇w 2(φ+ ε) =

λ

∫
Ω

φ

φ+ ε
w 2.
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Extension to More General Elliptic Problems

Here we discuss the case of an Elliptic PDE with Dirichlet boundary
condition.{

−∇ · (a∇φA) + Aq.∇φA + CφA = λAPφA in Ω,

φA = 0 on ∂Ω,

where a(x) = (aij(x)) is a C 1(Ω) symmetric matrix and there exist positive
numbers θ and β, such that

θ|ξ|2 ≤
∑

1≤i ,j≤N
aij(x)ξiξj ≤ β|ξ|2

• There exist two positive numbers p1 and p2 such that p1 ≤ P ≤ p2.
• C (x) ∈ L∞(Ω)
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Extension to More General Elliptic Problems

{
−∇ · (a∇φA) + A q.∇φA + CφA = λAPφA in Ω,

φA = 0 on ∂Ω.

Theorem (Berestycki, Hamel, Nadirashvili (2005))

1 If I0 6= ∅, then λA is bounded

λA → min
w∈I0

∫
Ω∇w · a(x)∇w + C (x)w 2∫

Ω Pw 2
as A→∞.

2 If I0 = ∅, then λA →∞ as A→∞.
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Elliptic PDE With Neumann Boundary Condition

{
−∇ · (a∇φA) + A q.∇φA + CφA = λAφA in Ω,

n · ∇φA = 0 on ∂Ω.

All assumptions are same except some changes about vector field q,
∇ · q = 0 a.e. in Ω and q · n = 0 in L1

loc(∂Ω).

Notice here, we do not need first integrals which are zero on the boundary.

Theorem (Berestycki, Hamel, Nadirashvili (2005))

λA is bounded and

λA → min
w∈I

∫
Ω∇w · a(x)∇w + C (x)w 2∫

Ω w 2
as A→∞.
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Why is q · n = 0 necessary?

We give a counterexample which shows if q · n 6= 0, then theorem does not
hold.

Example −φ
′′
A + Aφ

′
A + c(x)φA = λAφA in (0, 1),

φ
′
A(0) = φ

′
A(1) = 0.

Here, q = 1 and q · n 6= 0. First integrals are nonzero constants.

If c = 0, then theorem holds. Since λA = min
φ∈H1(0,1)

∫ 1
0 (φ

′
)2∫ 1

0 (φ)2
= 0. On

the other hand, from the formula given by theorem we have each
λA = 0.

Now, let c 6= 0 be a continuous function such that

c(0) <

∫ 1

0
c(x)dx . We see that theorem does not hold in this case.
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Why is q · n = 0 necessary?

First we rerwite equation in a self-adjoint way,{
−(e−Axφ

′
A)

′
+ c(x)e−AxφA = λAe−AxφA in (0, 1)

φ
′
A(0) = φ

′
A(1) = 0.

So

λA = min
φ∈H1(0,1)

∫ 1
0 e−Axφ

′2 + c(x)e−Axφ2
A∫ 1

0 e−Axφ2
≤
∫ 1

0 c(x)e−Ax∫ 1
0 e−Ax

.

But c(x) is a continous function in [0, 1]. So according to Stone-
Weierstrass theorem, it can be approximated uniformly by a sequence
{Pn(x)} of polynomials.∫ 1

0 c(x)e−Ax∫ 1
0 e−Ax

= lim
n→∞

∫ 1
0 (a0 + a1x + ...+ anxn)e−Ax∫ 1

0 e−Ax
.

= c(0) + lim
n→∞

∫ 1
0 (a1x + ...+ anxn)e−Ax∫ 1

0 e−Ax
.
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Why is q.n = 0 necessary?

so λA ≤ c(0). According to theorem

λA = min
φ∈I0

∫ 1
0 e−Axφ

′2 + c(x)e−Axφ2∫ 1
0 e−Axφ2

=

∫
0

1

c(x).

So

∫ 1

0
c(x) ≤ c(0), which contradicts with assumption. ♣
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Parabolic framework


uA
t = ∆uA − A q.∇uA t > 0,

uA(t, .) = 0 on ∂Ω and t ≥ 0,

uA(0, .) = u0(.).

Theorem (Berestycki, Hamel, Nadirashvili (2005))

The following properties are equivalent;

i) There exists u0 ∈ H1
0 (Ω) such that lim

A→∞
uA(1, .) 6= 0.

ii) The vector field q has a nonzero first integral in H1
0 (Ω).

iii) {λA} is bounded as A→∞.
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Proof from (ii) to (i)

Since on the RHS it is an elliptic equation with Dirichlet boundary
condition so from first theorem iii and ii are equivalent.

From proof of first theorem there exist a sequence An →∞ and w ∈ I0

such that
φn → w in L2(Ω),

φn ⇀ w in H1
0 (Ω).

Let un and kn = e−λntφn be the solution of (22) with initial conditions w
and φn in order. Call hn = un(t, .)− e−λntφn(.) so hn is a solution of

(hn)t = ∆hn − Aq · ∇hn, t > 0

hn(t, .) = 0 on ∂Ω, t ≥ 0

hn(0, .) = w(.)− φn(.)

Multiply equation by hn and integrate by parts
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Proof from (ii) to (i)

∫
Ω

∫ t2

t1

(hn)thn =

∫ t2

t1

∫
Ω

∆hnhn −
An

2

∫ t2

t1

∫
Ω

q · ∇h2
n︸ ︷︷ ︸

is 0 since ∇·q=0

1

2

∫
Ω

(h2
n(t2, .)− h2

n(t1, .))dx = −
∫ t2

t1

‖∇hn‖2
L2(Ω) dt︸ ︷︷ ︸

is always ≤0

so for each t1 < t2 we have

‖hn(t2, .)‖2
L2(Ω) ≤ ‖hn(t1, .)‖2

L2(Ω) . (5)

Now let t1 = 0 & t2 = 1,

‖hn(1, ·)‖2
L2(Ω) ≤ ‖w − φn‖

2
L2(Ω) .
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Proof from (ii) to (i)

Now let n→∞, so we get lim
n→∞

‖hn(1, .)‖2
L2(Ω) = 0. But

hn(1, .) = un(1, .)− eλnφn(.), so

lim
n→∞

un(1, .) = exp ( min
w∈I0(Ω)

∫
|∇w |2∫

w 2
)w 6= 0.♣

Remark

from the inequality (5) it’s clear not only for t=1, but also in each finite
time t0 the result is true, meaning lim

n→∞
un(t0, .) 6= 0.
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Proof from (i) to (ii) According to our assumption, there exists an initial
function u0 ∈ H1

0 (Ω) \ {0} such that un(1, .) 9 0 in L2(Ω) as n→∞.
Now we will prove it in three steps:

[1] There exist ε > 0, M > 0 and a sequence An −→∞, such that

0 ≤ u0 ≤ M a.e.

0 ≤ un(t, ·) ≤ M a.e.

‖un(1, ·)‖L2(Ω) ≥ ε for all An,

[2] There exist a subsequence {un} and w ∈ L2((0, 1)× Ω) such that
un ⇀ w ,

[3] We will prove the function w that we found in step 2, at a specific
time, is a nonzero first integral in H1

0 (Ω).
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Proof from (i) to (ii)

Step 1. It is a result of un(1, .) 9 0 in L2(Ω).

Step 2. In proof of previous part we showed that the map
t −→ ‖un(t, .)‖L2(Ω) is continuous and nonincreasing. So

‖un‖L2((0,1)×Ω) ≤ ‖u0‖L2(Ω) , for all n ∈ N.

Since {un} is a bounded sequence in L2((0, 1)× Ω) which is a Hilbert
space, so it has a weakly convergent subsequence un ⇀ w in
L2((0, 1)× Ω).
Step 3. As we did before multiply equation (22) by un and then integrate

−
∫∫

(0,1)×Ω
|∇un(t, x)|2dtdx =

1

2
‖un(1, .)‖2

L2(Ω) −
1

2
‖u0‖2

L2(Ω).

So, ∫∫
(0,1)×Ω

|∇un(t, x)|2dtdx ≤ 1

2
‖u0‖2

L2(Ω). (6)
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Proof from (i) to (ii)

Rellich theorem yeilds that there is a subsequence {unk} and a function w1

in H1
0 ((0, 1)× Ω) such that

unk → w1 in L2((0, 1)× Ω),

unk ⇀ w1 in H1
0 ((0, 1)× Ω).

Since unk ⇀ w in L2((0, 1)× Ω) and uniqueness of limit, w1 = w . So
w ∈ H1

0 ((0, 1)× Ω).
Now Let’s prove q · ∇w = 0,

lim
Ank
→∞

1

Ank

u
Ank
t = lim

Ank
→∞

(
1

Ank

∆uAnk − q · ∇uAnk ).

So,
0 = lim

Ank
→∞

q.∇uAnk = q · ∇w .
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Proof from (i) to (ii)

Now it’s enough to show w is not zero. Since 0 ≤ un ≤ M and the
function t → ‖un(t, .)‖L2(Ω) is non increasing

M|Ω| ≥
∫∫

(0,1)×Ω
un ≥

1

M

∫∫
(0,1)×Ω

u2
n ≥

1

M
‖un(1, .)‖2

L2(Ω) . (7)

Thus,

M|Ω| ≥
∫∫

(0,1)×Ω
un ≥

ε2

M
.

Since un → w in L2((0, 1)× Ω), so

M|Ω| ≥
∫∫

(0,1)×Ω
w ≥ ε2

M
. (8)

So w is not zero in (0, 1)× Ω.
To sum up, for almost every t ∈ (0, 1), the function w(t, .) is in H1

0 (Ω)
and satisfies q(.) · ∇w(t, .) = 0 a.e. in Ω. From (8), one concludes there
exists at least a t0 ∈ (0, 1) such that w(t0, .) is a nonzero first integral of
q in H1

0 (Ω).♣
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Conclusion

W
e studied the asymptotic behaviour of the principal eigenvalue

of some linear elliptic or parabolic PDE with large advection, in the
case of an incompressible flow.
We saw this behaviour is dircetly related to the first integrals of underlying
velocity field q.
• If there is a nonzero first integral the sequence of principal eigenvalues
are going to be bounded.
• If there is no nonzero first integral, the sequence goes to infinity.
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